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Abstract

A series of experiments to measure pressure and heating for code validation involving hypersonic, lamina,',

separated flows was conducted at the C',.dspan-University at Buffalo Research Center (CUBRC) in the l.arge Energy

National Shock (LENS) tunnel. The experimental data serves as a tbcus for a code validation session but are not
available to the authors until the conclusion of this session. The first set of experiments considered here involve

Mach 9.5 and Mach! !.3 N2 flow over a hollow cylinder-flare with 30 ° flare angle at several Reynolds numbers
sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of

experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 '_and aft-cone

angle of 55". Both sets of experiments involve 30" compressions. Location of the separation point in the numerical
simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical

simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was
easily introduced into the double cone simulations using aggressive relaxation parameters thai normally promote
convergence.
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Nomenclature

pressure coefficient, 2(p-p_)/p_V_ 2

reference length from leading edge to junction
Mach number

molecular weight, kg/k-mole
pressure, N/m 2
Prandfl number
wall heat transfer rate, W/m 2

p_V_/I_, Reynolds number, ml

arc length, mm
hypersonic approximation to Stanton number, A

2q_/p_V. _ C
temperature. K HCEF

vibrational temperature, K HCTF
velocity components in x and r directions, NS

respectively, m/s PG

free stream velocity, m/s S
cylindrical coordinates, cm SDB

eigenvalue limiter TE

specific heat ratio TLNS

viscosity, kg/m-s TN

density, kg/m _ [r

Subscripts

art attachment point, zero shear
i stream wise coordinate direction

j normal coordinate direction

sep separation point, zero shear
w wall surface conditions

free stream conditions

Table Abbreviations

adapted grid. shock aligned
curve fit collision cross section

hollow cylinder, extended flare

hollow cylinder, truncated flare
Navier-Stokes

perfect gas
Sutherland's law

sharp, double cone

thermal equilibrium
thin-layer Navier-Stokes

thermal nonequilibrium
unadapted grid
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Introduction

A series of numerical simulations were conducted

of experiments performed in the LENS facility for the

purpose of code validation under hypersonic
conditions _. The experiments were conceived to

challenge simulation capabilities under conditions of
large-scale separation while minimizing complicating
factors associated with turbulence, gas chemistry, and

three-dimensional end-effects. Experimental data will
not be released until numerical simulations are reported

on January ! 1, 20012.
The validation exercise here is similar to the First

Europe-US High Speed Flow Field Database
Workshop _. The hollow cylinder, truncated flare

configuration was featured in that workshop where
both the original experiment in R5Ch and several

computational simulations were reported. More
recently, experimental data and numerical simulations

were reported + of two, double-cone (25°/35 ° and
25"/50 °) shock-shock interaction problems. The
effective 10" compression case produced an Edney 5

Type VI interaction, similar to the interaction observed
here for the hollow-cylinder flare. The effective 25 '>

compression case produced an Edney Type V
interaction (with some allowance for viscous flow
features} similar to the interaction produced here by the

25"/55 '_sharp, double cone.
The test conditions are closely related to the

problem of predicting control surface effectiveness and

heating at large deflection angles for access to space
vehicles. The problem has been computationally
investigated, for example, on the Space Shuttle 6 and

X-337. The axisymmetric flow of the present test

problems enables a much more comprehensive grid
convergence study than possible on these more

complex configurations.

Models

Schematics of the models and representative

pressure fields are shown in Figures 1-3. Flow is from
left to right. The sharp, double cone (SDC) model is
shown in figure 1. The hollow cylinder, extended flare
(HCEF) model is shown in figure 2 and the hollow

cylinder, truncated flare (HCTF) is shown in figure 3.
The leading edge of the hollow cylinder is sharp. Flow

through the hollow cylinder is designed to pass through
the model without influencing the external flow. The

extended flare may allow larger separation as

compared to the truncated flare in some cases where
the shock impingement moves past the truncation

height.

Test Conditions

Test conditions are presented in Table 1.

Fundamental quantities in Table ! (velocity, density,

and temperature) are taken from the Calspan report;

Mach number and Reynolds number are derived fi'om

those quantities using appropriate thermodynamic and
transport property relations for molecular nitrogen in
the simulation code. All experiments were conducted

in the Calspan-University at Buffalo Research Center

(CUBRC) in the Large Energy National Shock (LENS}
tunnel _. Nominal flow conditions were at Mach 9.5 and

Mach 11.5 with Reynolds numbers per meter from
140000 to 360000 in nitrogen. Steady, laminar,

axisymmetric flow was reported for all tests considered

here. Experimental data includes surface pressure and
heating. This data will only be made available at the
conclusion of the conference session on January 1 I,
2001-'.
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Figure 1 Sharp, double cone (SDC} and computational
domain bounding pressure contour solution.

.... ,0.o8

Figure 2: Hollow cylinder, extended flare (HCEF) and

computational domain bounding pressure contour
solution.
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Figure 3: Hollow cylinder, truncated flare (HCTF) and

computational domain bounding pressure contour
solution.

Numerical Algorithm
Inviscid: The Langley Aerothermodynamic

Upwind Relaxation Algorithm (LAURA) s''_ is used for

all simulations in this report. Key elements of LAURA
include Roe's averaging _uand Yee's Total Variation

Diminishing (TVD) _zformulation of second-order,
inviscid fluxes. Yee's TVD formulation has been found

to be exceptionally robust and Courant-number-

independent using point-implicit relaxation for

hypersonic flow simulations. 3"he TVD algorithm uses
a non-linear, minmod function as a flux limiter that

maintains second-order accuracy away from exttema
but can admit limit cycles in the convergence process,

particularly in the vicinity of captured shocks. This
occurrence usually manifests itself as a stalling of

convergence at a very low error norm+ essentially a
benign tinging in the solution at a level that has no
impact on aerothermodynamic quantities. However, the

sharp, double cone test problem has proven to be more
challenging then the typical application: the ringing has

more profound consequences as will be discussed in
the results section.

Viscous: Viscous flux is computed using central
differences. A thin-layer, Navier-Stokes (TLNS)

formulation is applied in both i andj coordinate
directions. This formulation includes all but the cross

derivative terms of the Navier-Stokes (NS) equation
set. The complete NS equation set is also applied.

Comparisons of TLNS and NS simulations show
almost identical results for the test problems.

Gas Model: Perfect gas simulations for nitrogen

specify _' = 1.4, ,,R = 28.018, Pr = 0.7 !, and Sutherlands

law (S) for viscosity, U _1.3998 10 ¢'T_/'-/(T +

106.667). Options for thermal equilibrium (TE) and

thermal nonequilibrium (TN) were also exercised for

some simulations. In these options the gas is modeled

as single species molecular nitrogen: the TE and TN
specifications invoke thermodynamic curve fits for

heat capacity and enthalpy as functions of temperature.
Temperature in these tests is not high enough to

promote significant dissociation of nitrogen. Transport

properties in both the TE and TN options are derived
from curve fits (C) of collision cross-sections for

molecular nitrogen.

Thermal nonequilibrium is modeled using a two-
temperature model. Translational and rotational

energies are chm'acterized by temperature T.
Vibrational and electronic energies are characterized

by temperature Tv. In the test problems considered

here, vibrational and electronic energy modes are
nearly frozen (except within the recirculation regions)

making the constant y perfect gas model a good
approximation for the equation of state.

Grid: The computational domain for each
configuration is included in figures 1-3. The outer

boundary of each domain is initialized with straight
lines from a point just upstream and above the leading

edge of the model to an outflow boundary. The

position of the boundary is designed to tully contain
the shock. Grid lines emanating from the body of the

SDC to the outer boundary are straight and parallel, at
an angle normal to a reference line extending from the

leading to trailing edge. The HCEF and HCTF
configurations utilize a curvilinear grid that is normal

to the body. Both the SDC and sharp leading edge
hollow cylinder flare utilize a feeder block. The lower

boundary of the feeder block is tbrmed by the flow axis

in the case of the SDC configuration and is an
extension of the cylinder surface in the HCEF and
HCTF configurations.

An exponential stretching function is used to
distribute grid lines in the j direction from the body

across the boundary layer and the shock. Cell Reynolds
numbers less than 5 (HCEF, HCTF) or 11 (SDC) and

maximum stretching factors less than or equal to 1. I 1

throughout the domain are within the LAURA

parameter space for which heating in attached flows is
expected to be grid converged. The experience base for

stream wise resolution required to get grid converged
separated flows is not sufficiently developed tbr apfiori
estimates of grid convergence.

In the hollow cylinder configurations a shock

alignment algorithm in LAURA was used to bring the
outer boundary in closer to the shock and make best
use of _'id resources. The alignment procedure in the

SDC applications induced large-scale instabilities that

did not damp out: the shock position would oscillate
and waves would bounce off the outer boundary before

it was re-adapted. Consequently, larger numbers of
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grid in thej direction are required. The ranges of grid
resources used are defined in Tables 2-4.

Boundary Conditions: Boundary conditions in

LAURA require definition of variables within pseudo
cell centers across the boundary. No-slip, cold-wall

boundary conditions are used at the surface. Fixed,

supersonic, inflow boundary conditions are applied at
the outer (j = .J,,,,,Oboundary and the i = 1 boundary of

the feeder block. Extrapolation is used across the

predominantly supersonic outflow boundary. The./" = 1
boundary of the feeder block uses an axis boundary
condition in the case of the SDC and an extrapolation

in the case of the hollow cylinder flares. Computed
velocities remained parallel to this boundary using this

specification.

Table I: Test Problems

Model Run V_,m/s p_,kflm _ T_,K Tw, K M= Re=,ml
HCEF 8 2667. 0.001206 132.8 296.7 11.35 359600.

HCEF 9 2566. 0.000845 121.1 296.7 11.44 264830.

HCEF Ii 2609. 0.000507 128.9 297.2 11.27 152010.

HCEF 14 2432. 0.000794 156.1 295.6 9.55 185800.

HCTF 18 2661. 0.001175 130.6 295.6 11.42 355210.

SDC 24 2737. 0.001247 200.6 295.6 9.48 263790.

SDC 28 2664. 0.000655 185.6 293.3 9.59 144010.

Table 2: LAURA Cases for Run 8

Case (I x J) ei Viscous State x_/L As_p, mm x,tt/L As,,, mm

1 272 x 96, U 0.300 TLNS, S PG 0.5203 0.722 1.3132 0.757

2 272 x 96, U 0.001 TLNS, S PG 0.5202 0.722 1.3127 0.757

3 544 x 96, U 0.300 TLNS, S PG 0.5269 0.362 1.3112 0.380

4 272 x 96, A 0.300 TLNS, S PG 0.4650 0.734 1.3419 0.782

5 272 x 96, A 0.001 TLNS, S PG 0.4810 0.732 1.3322 0.775

6 544 x 96, A 0.001 TLNS, S PG 0.4736 0.367 1.3357 0.389

7 544 x 96, A 0.001 NS, S PG 0.4708 0.367 1.3363 0.389

8 1088 x 96, A 0.001 NS, S PG 0.4705 0.184 1.3373 0.195

9 1088 x 96, A* 0.001 NS, S PG 0.4689 0.183 1.3329 0.194

10 544 x 96, A 0.001 TLNS, C TE 0.5342 0.362 1.2994 0.376

11 544 x 96, A 0.001 TLNS, C TN 0.4794 0.366 1.3266 0.385

12 1512 x 192, A 0.001 NS, S PG 0.4410 0.184 1.3475 0.098

"A very small error in I. equal to 0.28 mm out of 101.7016 mm was found and corrected after Case 8.

Case (I x J)

1 272 x 96, U

2 272 x 96, A

3 544 x 96, A

4 1088 x 96, A

5 2176 x 192, A

Table 3: LAURA Cases for Run 18

e_ Viscous
0.001 NS, S

0.001 NS, S
0.001 NS, S

0.001 NS, S

0.001 NS, S

State x_e/L As_p, mm Xatt/L mSau,
PG 0.5036 0.727 1.3170 0.771

PG 0.4754 0.731 1.3330 0.781

PG 0.4861 0.365 1.3280 0.389

PG 0.4840 0.182 1.3284 0.194

PG 0.4714 0.090 1.3352 0.096

Hollow Cylinder Flare Results
Overview: Five test conditions involving the

hollow cylinder flare are defined in Table I. The
most comprehensive set of tests were executed for

Run 8 on the HCEF configuration to investigate
issues of grid convergence and effects of numerical

parameters and gas models on the computed results
as defined in Table 2. Case 1 was initialized with

uniform flow. In all subsequent cases, solutions were

initialized using earlier case converged solutions.

Grid convergence for the HCTF configuration in Run

18 was also investigated as defined in Table 3.
Pressure contours and streamlines for Run 8,

Case 12 on the HCEF are shown in figure 4 over the

cylinder and in figure 5 over the flare. The 30° flare

sets up an oblique shock. The high post shock
pressure is felt upstream through the boundary layer
and induces separation. A weaker oblique shock sets

up ahead of the separation point and the stronger flare
shock moves further downsueam with the
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reattachment point. An equilibrium condition is
established with separation at x/L = 0.441 and
reattachment at x/L = 1.348. (In the case of the

truncated tiare, the equilibrium reattachment point

may be constrained by the location of the truncation

point). The separation shock overtakes the leading
edge shock at approximately x/L = 0.9 in figure 4.

Grid resolution in the vicinity of this interaction is

approximately 0.1 mm in the stream wise direction
and 0.2 mm in the normal direction. The shocks

appear to merge into a single shock with the current
available resolution. This separation shock intersects
the flare shock at x/L = 1.42. Resolution in the

vicinity of this interaction is approximately 0.1 mm
in the stream wise direction and 0.03 mm in the
normal direction.

1.2
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0.7

0.6
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0.4

0.3

0 0.5 1
wL

Figure 4: Pressure contours (flooded) and streamlines

over cylinder part of HCEF for Run 8, Case 12.

1 1.5
WL

Figure 5: Pressure contours (flooded) and streamlines
over flare part of HCEF for Run 8, Case 12.

In figure 4. a slight upwelling of the streamline
in the reverse flow region near the wall at x/L = 0.9 is

observed. There is a local minimum in shear beneath

this upwelling but there is no embedded, counter-

rotating vortex in this simulation.

In Tables 2 and 3 the values of X,_p/L and Xatt/L

indicate locations of zero surface shear. The

separation point Ibllows the initial pressure rise by

approximately 3 mm in Run 8. The variables As_,.r

and As_tt in the tables indicate the stream wise mesh

spacing across the separation and re-attachment

points, respectively.
Case 12 uses the densest grid but suffered some

ringing of the flux limiter so that the error norm
stalled (order 10 '). Case 9 results have the best

combination of residual convergence (order 10 .7 ) and

grid density. Using either Case 9 or 12 results as a
reference in Table 2, it is evident that grid adaptation

in coarser grids provides earlier separation and better
agreement with the reference than unadapted results.

For example, contrast Case 4 with Case 1 and Case 6
with Case 3.

Residual convergence: In all cases except Case
12, the L_, error norm dropped to order 10-_'or lower.

Case 12 residual convergence stalled at an L2 error
norm of order 10 _ for 128 hours of single processor

R I2000 CPU time. In contrast, Case 8 required 100

point-implicit relaxation steps and 5660 line-implicit

relaxation steps for 16.3 CPU hours to drop the L:
error norm to 3.1 10 7. (In general, these test cases

with large separation and fine stream wise grids are
more susceptible to ringing of the flux limiter and
require smaller Courant numbers to reduce ringing.

The sharp double cone results section includes
additional discussion on this issue of stalled

convergence.)

Eigenvalue limiter: The eigenvalue limiter
provides positive definite dissipation in the upwind

scheme when Roe averaged eigenvalues on an i face
are less than 2e,. (Limiters in thej direction spanning

the boundary layer utilize an additional reduction

factor.) The limiting is only engaged in regions where
there is flow reversal or near-sonic velocity.

Expansion shocks are admitted without the limiter.
Previous experience with attached, fully supersonic
flow indicates that the smaller limiter provides more

accurate solutions on coarser grids while the larger
values of the limiter enhance solution robustness.

Little effect is seen in the unadapted grid between

Case 1 and 2. A 1.6 mm difference (approximately
two stream wise cells) in the separation point is

observed for the adapted, coarse grid result (Case 4
versus Case 5). The larger eigenvalue limiter in this

comparison provides better agreement with the Case
12 reference, in contradiction to previous experience

as noted above. Subsequent cases retain use of the

smaller value (e, = .001 ) in keeping with prior
experience. The separation point for Run 12 on the



finestgridsoccurwithinthesamecellforc,=0.001
or"0.300.

Physical models: The additional cross derivative
terms included in Case 7 for the NS equation set

provide insignificant (within 1 stream wise cell)
difference in location of the separation point as

compared to the TLNS equation set of Case 6.

The thermal equilibrium option for single species
nitrogen engages the curve fits for heat capacity,

including effects of vibrational excitation ignored in
the perfect gas (PG) model. It also engages curve fits

for collision cross section (C) to compute transport
properties rather than using Sutherland's law (S) and
constant Prandtl number in the PG model. When
vibrational excitation is included under conditions of

thermal equilibrium (Case 10) a decrease in

separation extent is observed (-6 mm) as compared
to the PG mode (Case 6). However. when thermal

nonequilibrium effects are included (Case 11) the
vibrational temperature stays relatively low,

vibrational energy modes are not significantly

populated, and the constant y approximation of the
PG model is more accurate. In this situation, the

onset of separation for the TN model (Case 11 ) is

only about 0.6 mm delayed as compared to the PG
model (Case 6).

Comparison of cases 6, 10, and ! ! for surface
pressure coefficient and Stanton number are

presented in Figures 6-9. They confirm on a global
and detailed basis the near equivalence of the PG and
TN models for conditions of Run 8.

Influence of Mach Number and Reynolds
Number: Runs 8, 9,and 11 exhibit a variation in

Reynolds number at approximately constant Mach
number 11.3. Surface pressure coefficient and

Stanton number for these three runs using consistent

grids, gas model, and numerical parameters from
Case 9 are compared in figures 10-14. The extent of

separation increases with increasing Reynolds
number. The over-expansion on the flare is mole
pronounced at the higher Reynolds number (Run 8).

The influence of Mach number is investigated by

comparing Run 14 at Mach 9.5 to Runs 9 and 11 at
Mach 11.4. The free stream Reynolds numbers for

Runs 9 and 11 bound the Run 14 Reynolds number.

The extent of separation for Run 14 is also bounded
by the extent of separation for Runs 9 and 11, as

shown in figures 10-14. The effect of Mach number
over this limited range appears to be much less

significant than the effect of Reynolds number.
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Figure 6: Surface pressure coefficient (global view)

over HCEF from Run 8 showing effect of
thermodynamic model.

0.1

0.09

0.08

0.07

0.06

o.os

0.04

0.03

0.02

0.01

0

........ Perfecl Gas Case 6

Thermal Eq. Caso 10

__ -- ..... Thermal Non. Eq Case 11 __

"'f- s"

.,,'_ //

. / . j"
/" /

L I L , I J

0.45 0.5

x/l.

_0./_

Figure 7: Detail from figure 6 around sepm'ation
point.

o"

2

1.75

1.5

1.25 /f

0.75;.//_
0.5 -.."_""

0.25

q:3 135

Pa_ecg Gas Case 6

Thermal Eq. Caas 10

Therrml Non. Eq Case 11

i i i
1.4 1.45

Figure 8: Detail from figure 6 around attachment

point.



...... Perlecl Gas Cm 6

| ---_ Thermal Eq. Case 10

0.04 i j Thermal Non. Eq Case 11

0,03

0.02

0.01

%

i I'

!

, 1

0.5 1 1.5

x/l.

, c I

2.5

0.6 _ --

0.575 "

0.55 _----

0.525
,l_,1_1.<._"d

h 14 ,/

o.5 -W-- ,_
tx ,,t

: _/
0.475 _ J

o.4q15_ ,1.6 1.7

Run M

8 11.35

9 11.44

..... 11 11.27

14 9.55

1.8 1.9 2

]Ul-

Re I m -_

359600

264830

152010

185800
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Figure 12: Detail from figure 11 showing magnitude

of over-expansion and reflected waves.
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Figure 13" Influence of Reynolds number and Mach

number on Stanton number over HCEF cylinder.
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Figure 15: Surface pressure coefficient disu'ibution
and overlay of pressure coefficient contours from
Run 8 (black) and Run 18 (red) around peak pressure.
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Figure 16: Surface pressure coefficient distribution

and overlay of pressure coefficient contours from
Run 8 (black) and Run 18 (red) around peak pressure

point.

Truncated Flare Effect: The attachment point for
Run 8, the largest Reynolds number test, on the

extended flare is situated approximately 8 mm

upstream of the corresponding truncated flare
expansion corner. The peak pressure for Run 8
below the shock-shock interaction is located on the

extended flare at the equivalent location of the

expansion corner on the truncated flare. Run ! 8 over
the truncated flare has equivalent Mach and Reynolds
numbers as Run 8. The attachment point for Run 18

is constrained by the expansion comer; flow relief

through expansion at this corner reduces the extent of
separation. This point is illustrated in figure 15 in
which pressure contours in the vicinity of the

attachment point for Run 8 (Case 12) and Run 18
(Case 5) are compared. The corresponding pressure

contours at the separation point are presented in

figure 16.
Grid Convergence: Grid convergence of surface

pressure coefficients and Stanton number using

equivalent physical models and numerical parameters
are documented in figures 17-20 for Run 8 (HCEF).

Figure 17 features a global view of Cp convergence
as a function of Mid density. Figures 18 and 19 focus

on the separation and attachment points. Only a
global view of Stanton number convergence as a

function of grid is presented because relative
differences follow the same trend as presented in

corresponding figures for Cp. Also, corresponding

figures for Run 18 are similar to Run 8 results and are
not presented. Runs 8 and ! 8 are at nearly equivalent
free stream conditions.
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Figure 17: Surface pressure coefficient as function of

grid resolution for Run 8 over HCEF.

0.07

0.06

0.05

0.04

U 0.03

0.02

0.01

0

f

,5

! ./ I

, i 544 x96 Citie 6

i --- 1068x 96 Case 9

-- 1512 x 192 Case 12

0,45 O. 5 0.25

x/L

Figure 18: Detail of figure 17 around separation

point.
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Figure 19: Detail of figure 17 neat attachment point.

Both grid convergence tests exhibit residual

convergence for the first three grid densities (272 x
96), (544 x 96), and ( 1088 x 96); both experience

stalling of convergence for the finest grids (1544 x
192) in Run 8 and (2176 x 192) in Run 18. Stream

wise grid convergence is evident tbr the three cases

with 96 points across the shock layer. A subsequent

refinement across the shock layer ( 192 points)

Figure 20: Stanton number as function of grid
resolution for Run 8 over HCEF.

induces a slight, earlier onset of separation but low-

level oscillations are not damped and the residuals
tail to converge. There is no large-scale motion

evident in the hollow cylinder flare cases when the
residual hangs in this manner. However. this behavior

is more profound in the SDC tests described in the
next section.

Case

1'

2 _

3 _

4 _

5'

6 _

7

8

9

10

11

12

13

(I x J)

64 x 64, U

128 x 128, U

256 x 128. U

256 x 128, U

512 x 256, U

512 x 256, A

512 x 256. U

1024 x 256, U

512 x 256, U

512 x 256. U

512 x256. U

512 x 256. U

512 x 256, U

Table 4: LAURA Cases for Run 28

c, Viscous

0.300 TLNS, S

0.300 TLNS, S

0.300 TLNS, S

0.300 NS. S

0.300 TLNS, S

0.300 TLNS, S

0.300 NS, S

0.001 NS, S

0.001 TLNS, C

0.001 TLNS, C

0.001 TLNS, C

0.001 TI,NS. S

0.001 NS, S

State x_g/L As_cp, mm
PG 0.7676 3.70

PG 0.7974 1.85

PG 0.6540 0.926

PG 0.6505 0.926

PG 0.5580 0.463

PG 0.5634 0.463

PG 0.5713 0.463

PG 0.5555 0.231

TN 0.7176 0.463

TN" 0.7209 0.463

TE 0.8410 0.463

TN 0.7013 0.463

TN 0.6944 0.463

Used preliminary conditions: V_ =2658 m/s, p= =

Tv. _ = 1000 K

x:,tt/L As=,u.mm
1.083 3.91

1.0779 1.96

1.1841 0.978

1.1841 0.978

1.2790 0.489

many
1.281 0.489

1.291 0.245

1.147 0.489

1.145 0.489

1.084 0.489

1.159 0.489

1.161 0.489

0.000778 kg/m _. T_ = 198.9 K

Sharp, Double-Cone Results

Overview: Two test conditions involving the
sharp, double cone (SDC) are defined in Table 1. The
most comprehensive set of tests were executed tbr

Run 28 on the SDC configuration to investigate

issues of grid convergence and effects of numerical
parameters and gas models on the computed results
as defined in Table 4. Case 1 was initialized with

uniform flow. In all subsequent cases, solutions were

initialized using earlier case converged solutions.

Pressure shaded contours and streamlines for

Run 28, Case 8, are shown in figure 21 focusing on

the interaction region surrounding the cone-cone
junction. The flow develops in much the same way as
described previously for the HCEF. The relative 30"

angle of the second cone to the first is the same angle

as the HCEF and HCTF tests. The separation shock
sets up on the first cone at x/L -0.55. The separated

flow extends fi'om this point to x/L ~ 1.3 on the
second cone. The dividing streamline sits



approximatelyhalfwaybetweenthejunctionpoint
andtheshock.UnliketheHCEFsimulations,a
counter-rotatingvortexsetsupwithinthelarger
separationbubbleabovethecone-conejunction.A
complexseriesofinteractingshocksandexpansions
setsupdownstreamoftheshock-shockinteraction
andtheterminationoftheseparationbubble.Figures
22and23will focusontheseinteractions.

Figure22showspressure,streamlines,andsonic
lineinaviewthatzoomsinontheinteractionregion.
Thedividingstreamlineoftheseparationregionis
slightlyconcave,tormingacompressionboundaryin
theregion1.I<x/L<l.25.Compressionwavesfocus
tothecenteroftheshocklayerwheretheyinteract
withashockemanatingfromtheshock-shock
interaction.Theinteractionofthesetwowaves
appearstoformaMachdisk,behindwhicha
subsonic,high-pressurezoneisformed,boundedby
twotransmittedshocks.(Detailsofthesestructures
aresomewhatmutedbygridresolutionof0.14mm
by0.24mminthisregion.)Theupwardrunning
shockreflectsasanexpansionoffthedividing
su'eamlinepassingtlu'oughtheshock-shock
interactionpoint.Thisstreamlineboundsan
approximatelyconstantpressureregionandclosely
followsthesonicline.Thedownwardrunningwave
terminatesonthetailoftherecirculationzone.There
isanexpansionoffthetailoftherecirculationzone
thatultimatelyreflectsfromtheupperdividing
streamline/ slip surface containing the sonic line.
Subsequent wave reflections continue in the expected
manner; compression waves reflect from solid

boundaries as compressions and reflect from constant

pressure surfaces as expansions. Expansion waves
reflect from solid boundaries as expansions and from
constant pressure surfaces as compressions _z.

0.5 0.75 1 1.25
x//

Figure 21: Pressure contours (flooded) and
streamlines over interaction region of SDC for Run

28, Case 8.
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Figure 22: Detail of interaction region for Run 28
with pressure contours (thin, multi-colored lines),
streamlines (thin, black lines), and sonic line (thick,
red line).

'-'k / ,',1;7
o.-I /
°.t:r

1 1.t 1.2 1.3 t.4

_L

Figure 23: Detail of interaction region for Run 28
with density contours (thin, multi-colored lines),
streamlines (thin, black lines), and sonic line (thick,
red line).

Figure 23 highlights the slip surface emanating
from the shock-shock interaction using density

contours. The high-density gradient defines the
viscous slip surface; it contains the dividing
streamline and sonic line. Flow is supersonic beneath

the slip surface and subsonic above it.
The test cases for Run 28 in Table 4 are chosen

to demonstrate grid convergence and test effects of

physical models and numerical parameters. Effects of

eigenvalue limiter and choice of TLNS or NS
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equation sets have minimal impact on results.
consistent with observations for the HCEF. Grid

convergence studies and tests involving thermal

nonequilibrium models exhibited behaviors not
observed in the HCEF tests: these behaviors are

discussed in the following sections.

128 x 128

.... 258 X 128

512,J.2,_

-- 1024 x 25E

0.5 I 1,5 2

x/L

Figure 24: Grid convergence study for Run 28 -

surface pressure coefficient.
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_ _ _ 512x258 C41ge5

1024 x 256 Calm 8
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Figure 25: Grid convergence study for Run 28 -
Stanton number.

Grid and Residual Convergence: Grid
convergence trends for Run 28 are documented in

figure 24 (Cp) and in figure 25 (St). The separation
point moves forward as grid is refined, consistent
with trends observed in the HCEF tests. The

complex, reflected wave pattern noted in figures 22

and 23 causes multiple peaks and valleys downstream
of reattachment. The final stream wise doubling of

grid produces negligible change in surface pressure
or heating. A subsequent attempt to double the grid in
the normal direction initiated slight, upstream

movement of the separation: however, the separation
bubble became highly unstable and the large-scale

motion would never damp out. Repeated attempts to
nurse the solution by decreasing Courant number,

changing order of relaxation sweeps, or using more

conservative relaxation factors would delay but not
eliminate the problem.

The cause of this numerical unsteadiness is

unknown. Such large-scale motions were not detected

experimentally. In general, the minmod operator used
in the flux limiter to obtain 2"°-order accuracy away

from discontinuities could possibly serve as a

disturbance source that is amplified by this specific
combination of algorithm and flow physics. The

minmod function compares three characteristic

gradients in the neighborhood of a cell wall; the
function makes discrete choices regarding which

m'gument to return depending on relative magnitudes
and signs. While the minmod function is known to

occasionally introduce ringing in the residual
convergence in the vicinity of shocks (due to cycling

of the returned argument) a problem of inducing

major unsteadiness has not been observed previously
in LAURA applications. This issue is fullher
explored in the simulation of Run 24 while

examining effect of Reynolds number.

Effect of Reynolds Number: The effect of

Reynolds number is explored by comparing Run 24
with Run 28. As noted in Table 1, the Reynolds
number for Run 24 is nearly double that of Run 28.

Based on experience with HCEF trends, the
separation point for Run 24 would be expected to

move upstream. The Run 24 simulation was
initialized from Run 28, Case 7, and used the same

grid and numerical parameters to generate the
solution. The separation point was observed to move

upstream, approaching x/L = 0.4. As the simulation
continued large-scale unsteadiness developed, just as

observed in Run 28 albeit on a much finer grid.

o_

Run 24, 1M-older

__ Run 28, and-order

2

Figure 26: Comparison of surface pressure

coefficient including combined effect of Reynolds
number and order of accuracy.
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Figure 27: Comparison of Stanton number including
combined effect of Reynolds number and order of

accuracy.
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Figure 28: Effect of thermodynamic and transport
property models on surface pressure coefficient for
Run 28.
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Figure 29: Effect of thermodynamic and transport

property models on Stanton number for Run 28.

Since the higher-order treatment is suspected of

inducing the instabilities a simulation for Run 24 was
made that included only the l _t order flux

differencing. This solution converged and is
compared to Run 28 in figures 26 and 27. The

separation point for the higher Reynolds number case
occurs earlier than the lower Reynolds number case.

It is assumed that the difference in separation
location would be larger if both simulations were 2"d-
order accurate.

Effect of Gas Model: A comparison of perfect

gas, thermal equilibrium and thermal nonequilibrium
gas models for Run 28 are presented in figures 28

and 29. A comparison of the viscosity models is also
included, revealing no significant difference between
the Sutherland's law and N2 collision cross section

curve fits when used in conjunction with the same
thermodynamic model (Case 9 and Case 12).

The thermal equilibrium simulation shows
significant reduction in separation extent, even larger
than observed with HCEF results in figures 6 and 9.

At thermal equilibrium temperatures, vibrational
energy modes are engaged and the simulation would

not be expected to match the constant y, perfect-gas
results.

The thermal nonequilibrium simulation shows

larger extent of separation than the thermal
equilibrium case in figures 28 and 29. This result is

consistent with HCEF results in figures 6 and 9.
Vibrational temperatures are essentially frozen at free
stream levels, except for slight increases in the

recirculation region and farther downstream over the

expansion corner. The ratio of specific heats is
effectively constant and yet agreement with perfect

gas results is poor, unlike the HCEF results.
The Roe's averaging algorithm involves

additional quantities for the general case of

thermochemical nonequilibrium. It is at first glance
surprising that these small algorithm differences

could support such a large difference in separation
extent; especially considering that good a_eement in
the HCEF tests was obtained. A plot of pressure
contours, streamlines, and sonic line for Case 9 (not

shown) equivalent to figure 22 indicates the absence
of the subsonic cove. In this case, there appears to be

a regular reflection rather than Mach reflection. The
approach of the dividing streamline to the surface is
smoother at the tail of the recirculation bubble. If this

test is at the cusp of conditions where subtle changes
can support either regular or Mach reflection beneath
the shock-shock interaction then the observed

differences for very similar gas models and
supporting algorithms may be credible.
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Summary
A series of numerical simulations were

conducted of experiments performed in the LENS

facility for the purpose of code validation under
hypersonic conditions. The expeliments were

conceived to challenge simulation capabilities under
conditions of lm'ge-scale separation while minimizing

complicating factors associated with turbulence, gas

chemistry, and three-dimensionality. Experimental
data will not be released until numerical simulations

are reported.
Nominal test conditions are at Math 9.5 and 11.4

at Reynolds numbers varying from 144000 to 360000

per meter. Three axisymmetric models are considered
in this report. Two hollow cylinders with sharp
leading edges and 30" flares are studied in the first

series of tests. A truncated flare slightly limited

extent of separation for the highest Reynolds number
tested. A sharp, double cone (25'_/55°), including a
30" compression is studied in the second series of

tests. The models are roughly 20 cm in length and 13
to 26 cm in diameter.

Numerical simulations show increasing extent of

sepaJ'ation with increasing Reynolds number and

significant movement of the sepaJation point over the
tested range. Mach number was not a significant

factor affecting separation for the limited range
considered here. All simulations required finer grids

than what might be considered "'intuitively" expected

in order to achieve grid converged results.
The hollow cylinder results exhibited very slight

increase in separation between the two finest grids
tested. Residual convergence was generally good,

though some tests showed convergence that stalled,
probably due to the non-linear minmod limiter. The

sharp, double cone results at the lowest Reynolds

number appeared to show grid convergence, but
massive instabilities manifested when an additional

level of refinement was introduced. The highest
Reynolds number double cone test required I_'-order

dissipation in order to get any convergence. Very

complex wave reflections were observed in the
double cone tests. A possibility of supporting either

regular reflection or Mach reflection was noted which
might explain sensitivity of results to grid and
physical models.
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